Improved Structures for Data Collection in Wireless Sensor Networks

Jon Crowcroft, Fellow, IEEE
Computer Laboratory
Cambridge University
Cambridge, United Kingdom
Email: Jon.Crowcroft@cl.cam.ac.uk

Michael Segal, Senior member, IEEE
Communication Systems Engineering Department
Ben-Gurion University of the Negev
Beer-Sheva, Israel
Email: segal@bgu.ac.il, levinlir@gmail.com

Liron Levin

Abstract—In this paper we consider the problem of efficient data gathering in sensor networks for arbitrary sensor node deployments. The efficiency of the solution is measured by a number of criteria: total energy consumption, total transport capacity, latency and quality of the transmissions. We present a number of different constructions with various tradeoffs between aforementioned parameters. We provide theoretical performance analysis for our approaches, present their distributed implementation and discuss the different aspects of using each. We show that in many cases our output-sensitive approximation solution performs better than the currently known best results for sensor networks. Our simulation results validate the theoretical findings.

I. INTRODUCTION

A wireless sensor network (WSN) consists of transceivers (nodes) that are located in the plane, communicate by radio and have no fixed communication backbone. The temporary physical topology of the network is determined by the relative disposition of the sensor nodes and the transmission range assignment of each of the nodes. The combination of these two factors produces a directed communication graph where the nodes correspond to the transceivers and the edges correspond to the communication links. The transmission range of each sensor node is determined by the assigned transmission power.

Our main objective in this paper is to construct efficient communication backbones for multi-hop data collection with aggregation in WSNs for arbitrary sensor node deployments, while measuring the efficiency based on the next four metrics.

- The transport capacity metric represents the sum of rate-distance products over all the active links. It is measured in bit-meters and was first introduced by [1]. The idea behind this measure is to capture both the notion of the overall rate and distance that the information travels in a network.

- Hop-diameter is another important metric which reflects the depth of the data gathering tree, i.e. the maximum number of hops from any of the sensor nodes to the base station.

- The stretch of the paths connecting sensor nodes to the base station. The distance stretch factor has a strong effect on the quality of geographic routing protocols [2]. These protocols use greedy forwarding decisions based on the geographic progress towards the destination, thus having a low distance stretch factor in the underlying topology graph is essential for efficient and successful geographic routing.

- Total energy consumption is probably one of the most important parameters of a WSN as the sensor nodes are often deployed in areas where battery replacement is infeasible [3]. Wireless communication is a major contributor to the energy budget of a node. In this paper we focus on minimizing the total energy consumed by all nodes for communication purposes.

We will follow two main approaches in our constructions. The first is based on so-called balance nodes, where the main motivation is to build data collection routes based on centrally located nodes in topologies which are already efficient in terms of some of the metrics. In our second approach we examine the addition of shortcut links to the currently constructed topology in order to allow the required tradeoff between studied criteria. In what follows we describe the model, discuss previous work, and describe our contribution. In Section 2 we show our balanced nodes based construction. The shortcut edges design is described in Section 3. Section 4 outlines a possible distributed implementation of our algorithms. We present our simulation results supporting our theoretical analysis in Section 5. Finally, we discuss some possible future research and conclude in Section 6.

A. System settings

A wireless sensor network (WSN) consists of n wireless sensor nodes, $S = \{s_1, \ldots, s_n\}$, distributed in some area A. These nodes perform monitoring tasks and periodically report to a base station r which is located somewhere within the area A (we consider different locations throughout the paper). During the report phase, the sensor nodes propagate
a message to the base station through a data collection tree, $T_S = (S \cup \{r\}, E_S)$, rooted at r. We consider data collection with aggregation, where every node $s \in S$ forwards a single unit size report message to its parent. The message holds an accumulated information collected from a subtree of T_S rooted at s. An example of this scenario can be found in temperature monitoring systems for fire prevention, intrusion detection, seismic readings, etc.

We assume the use of frame-based MAC protocols which divide the time into frames, containing a fixed number of slots. The main difference from the classic TDMA is that instead of having one access point which controls transmission slot assignments, there is a localized distributed protocol mimicking the behavior of TDMA. The advantage of a frame-based (TDMA-like) approach compared to the traditional IEEE 802.11 (CSMA/CA) protocol for a Wireless LAN is that collisions do not occur, and that idle listening and overhearing can be drastically reduced. When scheduling communication links, that is, specifying the sender-receiver pair per slot, nodes only need to listen to those slots in which they are the intended receiver – eliminating all overhearing. When scheduling senders only, nodes must listen in to all occupied slots, but can still avoid most overhearing by shutting down the radio after the MAC (slot) header has been received. In both variants (link and sender-based scheduling) idle listening can be reduced to a simple check if the slot is used or not. Several MAC protocols were developed to adapt classical TDMA solutions which use access points to ad-hoc settings that have no infrastructure; these protocols employ a distributed slot-selection mechanism that self-organizes a multi-hop network into a conflict-free schedule (see [4], [5]).

Let $d(u, v)$ be the Euclidean distance between two sensor nodes $u, v \in S$. It is customary to estimate that the energy required to transmit from u to v is proportional to $d(u, v)^{\mu}$, where μ is the path-loss coefficient. In perfect conditions $\mu = 2$, however in more realistic settings (in presence of obstructions or noisy environment) it can have a value between 2 and 4 (see [6]). In this paper we assume $\mu = 2$ for simplicity. However, it is possible to extend our results for other values of μ which are greater than 2.

Let $E(T_S)$ be the energy requirement to execute a single report phase. Note that every sensor performs a single transmission, during which it sends a single message to its parent in T_S. Thus, the energy requirement is proportional to the sum of squares of lengths of the edges E_S. The focus of this paper is to study the asymptotic performance of data collection trees, thus we can express $E(T_S)$ as follows, $E(T_S) = \sum_{(u,v) \in E_S} d(u, v)^2$.

Minimizing the energy requirement is one of the primary optimization objectives when deploying a WSN due to the very low battery reserves at the sensor nodes and the high costs that are associated with replacing these batteries (if at all possible).

Another critical aspect in the design of a WSN is the hop-diameter of T_S. The data flows from the leafs of the delivery tree to the base station, where each intermediate node waits to receive the report messages from all its children, before sending its own report message to its parent. Therefore, the hop-diameter of T_S, denoted as $H(T_S)$, determines the delay of data collection.

The third measure that we are interested in is transport capacity, $D(T_S)$, of the data collection tree T_S. As mentioned earlier, the main idea which stands behind this metric is to capture the spatial rate of the network, which is represented by the total rate over some distance. In our scenario, the rate on all links is fixed as all the nodes transmit an aggregated, unit-size message, to the parent in the collection tree and the schedule is conflict-free. Thus, to maximize the transport capacity we need to minimize the total distance traveled by information, which is the sum of lengths of all the links, $D(T_S) = \sum_{(u,v) \in E_S} d(u, v)$.

Finally, we also aim to decrease the stretch, $\delta(T_S)$, of the paths in the data collection tree T_S connecting sensors with the base station (root) of T_S. Let $d_T(u, r)$ be the length of the unique path $p_T(u, r)$ connecting u with the root r in T_S. Then, the stretch factor of this path $\delta(p_T(u, r))$ is the ratio $\frac{d_T(u, r)}{d_T(u, r)}$. The stretch factor of the paths in T_S is defined as $\max_{u \in T_S} \delta(p_T(u, r))$.

Unfortunately, it is impossible to achieve optimal performance in all four measures at the same time. For example, minimizing the hop-diameter results in all nodes transmitting to the base station, which is disastrous in terms of transport capacity or energy consumption, whereas the best topology to minimize energy consumption results in a relatively high hop-diameter. While we are interested in arbitrary deployments of sensor nodes, it was shown by Milleykovsky et al. [9] that single-hop construction having optimal hop-diameter and stretch factor by choosing a centdian as a root node may lead to very bad transport capacity and energy consumption.

B. Previous work

To the best of our knowledge, the only work which takes into account three of the aforementioned performance measures simultaneously (except of paths stretch) is by Milleykovsky et al. [9]. They [9] consider the random uniformly spreaded sensor nodes in unit size square in the plane and three dimensional space and present centroid-based hierarchical construction with hop-diameter of $O(\log n)$ that performs optimally (up to constant factor) in terms of energy and transport for three dimensional space and provides $O(\log n)$ approximation factor for energy consumption and asymptotically optimal transport capacity for planar case.

Below we discuss some other of the related work on data collection, energy efficiency, transport capacity, bounded-hop and bounded paths’ stretch communication.

It has been proved in [7], [8] that using the minimum spanning tree for data collection (gathering) with aggre-

1The Euclidean minimum spanning tree minimizes the energy consumption, see [7], [8].
The notion of transport capacity was introduced by Gupta and Kumar in [1]. They showed that for any layout parameter \(\rho\), the overall transport capacity is at most \(\frac{n}{\rho} + \log \rho\) per second under both interference models (protocol and physical). In [13] the authors derive upper bounds on the transport capacity depending, among other factors, on channel attenuation and path loss [14], [15], [16].

Some communication backbones with bounded hop-distances and/or bounded paths stretch between participating nodes have also been studied. For the linear layout of nodes and an upper bound on hop-distance, Kirousis et al. [17] developed an optimal power assignment algorithm for strong connectivity in \(O(n^4)\) time. In the Euclidean case, [18] obtains constant ratio algorithms for the bounded-hop vertex connectivity for well spread instances. Beier et al. [19] proposed an optimal algorithm to find a bounded-hop minimum energy path between pairs of nodes. In [20] the authors obtain biretrosa approximation algorithms for connectivity and broadcast while minimizing the hop-diameter and energy consumption. Funke and Laue [21] provide a PTAS for the \(h\)-broadcast algorithm in time linear in \(n\). Additional results for bounded range assignments can be found in [22], [23], [24], [25]. Li et al. [26] considered a problem of constructing energy-efficient broadcast tree with bounded stretch paths. However the approximation factor shown in [26] for the total energy consumption can be as worse as \(\Omega(n^2 \Delta)\), where \(\Delta\) stands for the degree of the obtained tree. Segal and Shpungin [27], [28] considered several spanner (opposite to data collection tree) constructions under the total energy consumption and hop-diameter, but ignoring the transport capacity measure.

C. Our results

We study the power assignment problem in wireless sensor networks so as to produce data collection tree while optimizing several properties of the construction: energy cost, transport capacity, hop-diameter and stretch of the paths. Our constructions work for arbitrary sensors deployments. Let us denote by \(OPT\) the minimal possible value that can be obtained by \(E(T'_S)\) for some \(T'_S\), and denote by \(OPT\), the minimal possible value that can be obtained by \(D(T'_S)\) for some \(T'_S\). Let \(T'\) be the minimal spanning tree for \(S \cup \{v\}\), \(w(T')\) be the weight of \(T'\), \(w(e'(T'))\) be the weight of the heaviest edge in \(T'\). Then our first construction for \(T_S\) guarantees the following bounds for given hop-diameter parameter \(h\), \(1 \leq h \leq n\); \(E(T_S) = O(n^2 h^2 \cdot w^2(e'(T')) \cdot OPT)\), \(D(T_S) = O((1 + \frac{2}{\alpha-1}) \cdot n \cdot d(e'(T')) \cdot OPT)\), \(h(T_S) = h\), \(\delta(T_S) = \alpha\), for \(\alpha > 1\). The second construction for \(T_S\) produces the following results: \(E(T_S) = O(n^2 h^2 \cdot OPT)\), \(D(T_S) = O(n^2 \cdot h \cdot OPT)\), \(h(T_S) = h\), \(\delta(T_S) = n^2 \cdot h^2\). Note that all the upper bounds derived in this article are compared with the best possible (optimal) lower bounds. Thus, the produced results serve as approximation guarantees for the considered problems.

II. Multi-hop collection for any deployment: transport, hop and stretch

In this section we propose hierarchical structure which has guaranteed bounds for transport capacity and hop-diameter in the scenario where the nodes \(S\) are placed anywhere in the area \(A\).

We start by describing the hierarchical structure obtained by balanced tree partitioning and then show how it can be used to produce an efficient communication backbone.

A. Balanced tree partitioning

We begin with some notation. Given a tree \(T = \{V, E\}\), denote the set of nodes in the subtree of \(T\), \(V(T')\), by \(V(T')\) and the set of the edges in \(T'\), by \(E(T')\). Denote the induced tree on the set \(V' \subseteq V\) of nodes by \(T_{V'}\). Next we provide the definition of balanced tree partition following by a proof that it exists for any tree \(T\).

Definition 2.1 (Balanced Tree Partition): Given a tree \(T = \{V, E\}\), a partition into two connected subtreess of \(T\), \(T_1, T_2\), where \(T_1 = \{V(T_1), E(T_1)\}\) and \(T_2 = \{V(T_2), E(T_2)\}\) is called a balanced tree partition iff the following conditions hold:

- \(V(T_1) \cup V(T_2) = V(T)\).
- There exists \(v \in V\) such that \(V(T_1) \cap V(T_2) = \{v\}\).
- \(|V_2| \leq |V_1| \leq 2|V_2|\).

We refer to \(v\) in the second condition above as the balance node.

Theorem 2.2 (Balanced Tree Partitioning): For any tree \(T\) there always exists a balanced tree partition.

Proof: We prove the theorem by contradiction. Suppose that for every node \(v \in V\), the partition we obtain does not satisfy the claim of the theorem, that is for every \(v \in V\),
and for any partition of \(T \) into \(T_1 \) and \(T_2 \) such that \(V(T_1) \cup V(T_2) = V(T) \), \(V(T_1) \cap V(T_2) = \{v\} \), and \(|V(T_1)| > 2|V(T_2)| \). Let \(v' \) be the node in \(V \) such that the ratio \(\frac{|V(T_1)|}{|V(T_2)|} \) is minimized over all possible choices of nodes. Let \(k = |V(T_1)| \) and \(m = |V(T_2)| \).

Let us consider a set \(N_{T_1}(v') \) of the neighboring nodes of \(v' \) that belong to \(T_1 \). Since we assumed that \(v' \) gives us the minimal ratio \(\frac{|V(T_1)|}{|V(T_2)|} \) over all possible choices of nodes, it means that a different partition \((T_1', T_2') \) which can be obtained from partition \((T_1, T_2) \) by moving some node \(w \in N_{T_1}(v') \) into \(T_2 \) and possibly some other nodes from \(T_2 \) which are connected to \(w \) as well, should produce a larger ratio.

Since we have that \(|V(T_1)| < |V(T_1')| \) and \(|V(T_2)| > |V(T_2')| \) the larger ratio can be produced only when \(|V(T_1)| > 2|V(T_2)| \), because otherwise the ratio \(\frac{|V(T_1)|}{|V(T_2)|} \) will be less than \(\frac{|V(T_1')|}{|V(T_2')|} \) which contradicts our assumption. Moreover, if \(|V(T_1)| < 2|V(T_2)| \) we can always bound the number of nodes added to \(T_2 \) (denoted by \(a \)) to be at most \(|V(T_1)|/2 \). This is because \(N_{T_1}(v') \) is at least 2 - in this case we can always add to \(T_2 \) the smaller subtree of \(T_1 \) rooted at some node of \(N_{T_1}(v') \). The reason for the fact that \(|N_{T_1}(v')| > 1 \) comes from our assumption that the ratio \(\frac{|V(T_1)|}{|V(T_2)|} \) is minimized over all possible choices of nodes. If \(|N_{T_1}(v')| = 1 \) we have that \(\frac{|V(T_1)|}{|V(T_2)|} \) will be less than \(\frac{|V(T_1) \cup V(T_2)|}{|V(T_1) \cup V(T_2')|} \).

To conclude, we have \(k > 2m \) (or in other words \(|V(T_1)| < 2|V(T_2)| \)) and \(2k - a < m + a \). These inequalities have no solution and thus we have reached a contradiction.

B. Obtaining a tree partition

Below we describe the algorithm that chooses the balanced tree partition of minimum spanning tree \(T \) with \(n \) nodes in \(O(n) \) time. We also emphasize that the algorithm uses only local information and, therefore, can be easily implemented in a distributed way. First, for each edge \(e = (u, v) \in T \), we compute how many nodes are located in the subtree \(T_u \) of \(T \) that includes \(u \) but not \(v \) and in the subtree \(T_v \) of \(T \) that includes \(v \) but not \(u \). Notice that \(T_u \cap T_v = \emptyset \) and \(T_u \cup T_v \cup \{e\} = T \). This can be done by a simple scanning of the tree \(T \), starting from the leaves, and converging towards the internal nodes of the tree while counting the number of nodes on the way. For the distributed version, we first establish the connectivity and run the algorithm of Awerbuch [29] that builds a minimum spanning tree. In order to find the above-mentioned values for each edge, we use the convergecast process. Next, we use a well-known fact that the maximal degree of any node in \(T \) is at most 5 [30]. It means that the number of partitions that can be possibly made (per each node) is constant. Using the information computed in the previous step, we can find each such partition in \(O(1) \) time. Thus, we can find the best partition for each particular node in \(O(1) \) time (and in \(O(n) \) time for all the nodes) and the best balanced tree partition in \(O(n) \) time.

C. Data collection through tree partitioning

Using the above, we can define our hierarchical construction in the following recursive fashion. We find the balance node \(v \) (which we assume is the location of the base station as well) of the minimum spanning tree \(T \) and split the tree into two subtrees \(T_1 \) and \(T_2 \) sharing the same node \(v \). Next we connect \(v \) with recursively computed balance nodes of \(T_1 \) and \(T_2 \), respectively, and continue in the same way. Clearly, the hop-diameter of the obtained hierarchy \(H \) (in fact, it is a binary tree) will be \(O(\log n) \) and the total sum of edges, or in other words, transport capacity \(D(H) \) will be \(O(\log n \cdot w(MST)) \), where \(w(MST) \) is the weight of minimal spanning tree for our set of nodes, when the edge weight is defined as the Euclidean distance between two nodes. We point out that such a partition can be obtained in \(O(n \log n) \) time since we will spend \(O(n) \) for each level of the hierarchy. For distributed version, we observe that the total runtime will be bounded by \(O(n) \) since the balance nodes in each level of the hierarchy can be computed in parallel and the time needed for computations in each level of the hierarchy is decreasing proportionally to fraction \(\frac{1}{2} \) of \(n \) (the size of the largest component).

We can provide some tradeoff mechanism between the hop-diameter of the hierarchy and the total distance of the obtained edges. Using the above-mentioned partitioning procedure we can build an \(m \)-ary tree hierarchy (for any integer parameter \(m \), \(1 < m \leq n \)). Instead of performing a (binary) partition of the tree \(T \) and connecting every parent node with two recursively computed children, we can partition the tree into \(m \) components by using a balanced partition, choosing the largest component from all components in current level and continue partitioning until we have \(m \) components. Next we connect the parent node with the \(m \) children which are recursively computed in the same manner. The obtained hierarchy \(H' \) has hop-diameter of \(\log_m n \); however the total transport capacity \(D(H') \) deteriorates to \(O(m \log_m n \cdot w(MST)) \). We may note here that Hassin and Peleg [31] suggested another construction based on separators of the tree; however the obtained degree of the resulted tree (and, therefore, the hop-diameter) can not be chosen (opposite to our strategy) and can be twice as large as the degree of the initial tree.

D. Augmenting shortest paths

At this stage we have a collection data tree \(T_S \) having hop-diameter of \(O(\log n) \) and having transport capacity of weight \(O(w(MST) \cdot \log n) \). Clearly, the weight of minimal spanning tree is equal to the optimal transport capacity \(OPT_e \) that can ever exist (each node, except of the root, needs to connect to its parent; thus the total transport capacity equals the sum of the edges’ weights in the tree). Thus, our collection data tree has transport capacity of weight \(O(OPT_e \cdot \log n) \). It may happen that the given root node \(v \) does not coincide with the current root of \(T_S \). In that case
case we simply redirect the corresponding edges towards \(r \). This procedure does not change asymptotically any bound derived for \(T_S \).

Next we proceed following the construction suggested by Khuller et al. [32]. A LAST is a combination of a minimum spanning tree and a shortest path tree. Given a graph \(G \), edges’ weight function \(w \) and a source node \(r \), Khuller et al. [32] presented a linear time algorithm, which computes a spanning tree of \(T \), so that its weight is at most \(\beta \) times the weight of a minimum spanning tree of \(G \), and for every node \(v \), \(p_r(v, r) \leq \alpha \cdot d(v, r) \), where \(\alpha > 1 \) and \(\beta \geq 1 + \frac{2}{\alpha - 1} \). A spanning tree that complies with the bounds is called an \((\alpha, \beta) \)-LAST. Basically, the algorithm for computing \((\alpha, \beta) \)-LAST works as follows. First, we compute the minimal spanning tree \(T \) of initial graph \(G \). In the following step, a preorder scan is performed over the vertices of \(T \) and the comparison is made between the weight of the existing path \(p_T(v, r) \) of currently scanned node \(v \) and the weight of the shortest path existing in \(G \) between multiplied by \(\alpha \). In case that the weight of currently existing path is larger, we add the edges of the shortest path in \(G \) to \(T \). Finally, the unnecessary edges are removed from \(T \) by running shortest path tree algorithm on \(T \) from \(r \).

We are going to incorporate our currently constructed \(T_S \) into the Khuller et al. [32] algorithm above. In particular, instead of computing minimum spanning tree, we supply \(T_S \) as the first step of the algorithm and the rest remains the same. We also note that the weight of the shortest path between any node \(v \) in \(G \) and \(r \) is simply \(d(v, r) \), i.e. we might need to add only one directed edge between \(v \) and \(T_S \) in case that the length of current path violates the given requirement. We also note that this procedure can only decrease the current hop-diameter of \(T_S \). The same proof for the obtained weight of spanning tree holds to our case as well, i.e. at the end of the algorithm we obtain a tree \(T_S \) having hop-diameter \(O(\log n) \), transport capacity of \(O(OPT \cdot (1 + \frac{1}{\alpha - 1}) \log n) \) and stretch factor \(\delta(T_S) = O(\alpha) \), for \(\alpha > 1 \).

E. Lower bound for sum of squares with bounded hop

One may wonder whether there is hope for designing bounded hop hierarchy for arbitrary points positions that simultaneously provides good bounds for transport capacity and the sum of squared distances, i.e. the energy requirement. Unfortunately, the following example shows that it is not possible (see Fig. 1). Consider the unweighted \(n \)-path: any tree \(T' \) with hop-diameter \(\Delta \), contains an edge with an interval length of at least \((n - 1)/\Delta \), and so its weight is at least \((n - 1)^2/\Delta^2 \). Observe that for the minimum spanning tree \(T \), \(E(T) = n - 1 \). However, for tree \(T' \), we have \(E(T') \geq n - 2 + (n - 1)^2/\Delta^2 \). It means that the approximation ratio we can have while aiming for the hop-diameter of \(\Delta \) is at least \(\frac{\Delta^2}{n \log n} \). For example, it follows that for \(\Delta = \log n \) we can not build any hierarchy having energy requirement less than \(\frac{\Delta^2}{n \log n} \) times the optimal one.

![Fig. 1: Demonstrating a lower bound for sum of squares of distances.](image)

III. MULTI-HOP COLLECTION FOR ANY DEPLOYMENT: ALTOGETHER WITH ENERGY

In this section we are going to build a structure that can perform well under all of the proposed criteria: energy consumption, transport capacity, hop-diameter and stretch of the paths to root node. As we already mentioned, Elkin et al. [10] proposed the solution for the data collection tree problem such that the total energy consumption is of factor \(\rho \) from optimal bound \(OPT_r \) and the hop-diameter is \(n/\rho + \log \rho \), for any chosen integer parameter \(\rho \), \(1 \leq \rho \leq n \). In some sense, this is almost best (up to logarithmic factor) we can do in a view of lower bound example above. Nevertheless, below we present a novel construction that in many cases outperforms the construction of Elkin et al. [10].

Let us denote by \(T' \) the minimal spanning tree for the set of nodes where the weight of edge is defined as the squared Euclidean distance between the nodes, and \(w(T') \) is the total weight of the edges in this tree. As can be easily seen, \(w(T') \) is the lower bound for the energy consumption for data collection tree (each node, except the root, transmits to its parent in the tree). The main weakness in Elkin et al. [10] approach is that they completely ignore the current hop-diameter of \(T' \). Assuming we are given a desired bound \(h \) for hop-diameter and \(b(T') > h \), they immediately transform \(T' \) into corresponding Hamiltonian cycle with a consequent hierarchy construction. However, in cases when \(b(T') \) not exceeds by much at \(h \) (as we show, it can be as much as \(O(h^2) \)), we can do better. Below we present and analyze our construction.

First we find \(T' \). We can do this in \(O(n \log n) \) time using Delaunay triangulation. Next, we check, whether the resulting tree \(T' \) satisfies the requirement of hop-diameter at most \(h \). If yes, we are done. Otherwise, we are going to shorten the tree in the following fashion. We choose the given vertex \(r \) to serve as the root and tag every other node using its distances from the root. It can be done using the standard BFS algorithm. Every edge also receives tag being the minimum value between its both endpoints. Next, we make \(h \) stages. At stage \(j \), \(0 \leq j \leq h - 1 \), we remove from the tree \(T'' \) rooted at \(v \) all the edges being tagged \(i \cdot h + j \), for every \(i, 0 \leq i \leq \lceil |V|/h \rceil \), and connect the nodes tagged \(i \cdot h + j + 1 \) directly to the root \(r \). We call the resulting tree \(T_j \). After all \(h \) stages we choose between \(h \) trees \(T_j \) the tree having minimal weight. We call this tree \(T'' \). We bound the performance of this solution as follows. Since \(T'' \) has the minimal weight between all \(h \) trees, it follows that weight \(w(T''_j) \leq (1/h)\sum_{j=0}^{h-1} w(T_j) \). Next, notice that when considering the entire collection \(\{T_j\}_{j=0}^{h-1} \)
Thus, $\Sigma_{j=0}^{h-1} w(T_j) \leq h \cdot w(T') + n^2 \cdot w(e^*(T'))$. Combining things together we obtain: $w(T'') \geq w(T') + n^3 \cdot w(e^*(T'))/h$. In other words, the weight of T'' provides $1 + \frac{n^2 w(e^*(T'))}{w(T')}$ approximation for optimal solution. The SHORTCUT MST algorithm shows the formal description of aforementioned scheme.

But, in fact, we can do much better. The idea is that every edge cut and its replacement will lead to an additional $O(h^2 \cdot w(e^*(T')))$ increase of energy, instead of current increase of $n^2 \cdot w(e^*(T'))$ per edge. The crux is to cut the edges not in intervals of size h but rather take intervals of size $h, h-1, h-2, \ldots, 1$ and connect the node u (that became disconnected as the result of cut) in the interval of size t, $1 \leq t < h$ to the node (that became disconnected) in the interval of size $t+1$ that lies on the same path in T' as u. The node in interval of size h is connected directly to the root. We perform the same shifting strategy as before. This scheme is presented in IMPROVED SHORTCUT MST algorithm figure and guarantees that even new added edge may need to bypass at most h original edges of T' and, therefore, will lead to $O(h^2 \cdot w(e^*(T')))$ increase in total energy consumption. To conclude, we have a construction that provides $O(\frac{n^3 w(e^*(T'))}{w(T')})$ approximation for total energy consumption with hop-diameter of h assuming that the hop-diameter of minimum spanning tree is at most h^2. This result compares well with the best solution to date by Elkin et al. [10] from the following reason. Of course, the value of $w(e^*(T'))$ can be as large as $w(T')$ but in many cases, the weight of the heaviest edge of minimum spanning tree behaves similarly as the length of the average edge in minimum spanning tree or similar to this. For example, for uniformly distributed points in 2-dimensional unit size square, $w(e^*(T')) = O(\log n/n)$ and $w(T')$ is at least $\Omega(1)$, see [33]. It means that for this and similar cases, the approximation factor stands at $h \log n$. If we choose $h = O(\log n)$, then our approximation factor is $O(\log^2 n)$ while the solution in [10] produces approximation of n. Moreover, even if $\frac{w(e^*(T'))}{w(T')} = n^{-\varepsilon}, 0 < \varepsilon < 1$, our approximation is $hn^{-\varepsilon}$ and for the polylogarithmic values of h our algorithm gives better approximation than in [10].

Remark. The IMPROVED SHORTCUT MST scheme can be applied in a bootstrapping fashion for the case when $h \in o(\sqrt[h]{\log h(T')})$. In particular, we can take T' and cut the edges in intervals of $h(T'), h(T') - 1, h(T') - 2, \ldots, 1$ by adding shortcut edges. In such a way, we will obtain a new tree T'' having hop-diameter $h(T'')$. If $h \in o(\sqrt[h]{\log h(T''')})$, we apply the same procedure to T'' cutting it in intervals of $h(T''), h(T'') - 1, h(T'') - 2, \ldots, 1$ with addition of shortcut edges. We repeat this process until we obtain a tree of desired diameter. Clearly, the number of bootstrapping steps is at most $O(\log \log h(T'''))$ since we shrink the hop-diameter recursively by square root factor.

Now we suggest how to incorporate the stretch of paths characteristics into our solution. We will show that while the stretch of the paths drops to the factor of $h^2(T') \cdot n^{\varepsilon}, 0 < \varepsilon < 1$, the total energy consumption in new tree increases by factor of at most $n^{1-\varepsilon^2}$ from the energy consumption in T'. We start scanning all of the nodes in our constructed tree T''. In general, the technique will work for any data collection tree. If the distance $d(v,r)$ between currently scanned node v to root r is less than $d(e^*(T'))/n^\varepsilon, 0 < \varepsilon < 1$, then we remove the edge from v to its parent node in T' and put a direct edge between v and r. Notice, that the hop-diameter, $h(T'')$, can only decrease as the result of our procedure.
Let us compute what happens with total energy consumption. In the worst scenario, we replaced all the edges in the tree and, therefore, the total energy consumption is bounded by \(\frac{\sum_{v \in V} \omega(T')}{\alpha n^2} \) and the approximation factor from the optimal solution is \(O(n^{2-2\varepsilon}) \). For appropriate values of \(\varepsilon \) and, for example, for polylogarithmic values of \(h \) or even higher, we obtain a sublinear approximation factor. We leave to any interested reader to obtain the exact range of values when the approximation factor for total energy consumption is \(o(n) \) (notice that in our analysis we assumed that \(\omega(e(T')) = \omega(T') \) where for many cases as shown above \(\omega(e(T')) \) is much smaller than \(\omega(T') \), and, better approximation factor can be derived; the same holds for transport capacity as well).

In order to evaluate the stretch factor of the obtained paths we notice the following. First, if \(d(v, r) < d(e(T'))/\alpha n^2 \), then a shortcut has been added and the stretch of the path between \(v \) and \(r \) in new tree is 1. Second, if \(d(v, r) \geq d(e(T'))/\alpha n^2 \), then the length of the path between \(v \) and \(r \) in a new tree is at most \(h(T') \cdot d(e(T')) \leq h^2(T') \cdot d(e(T')) \leq n^2 \cdot h^2(T') \cdot d(v, r) \). It means that the stretch of the path is at most \(n^2 \cdot h^2(T') \).

Using the above results, we have the following theorem.

Theorem 3.1: Given an integer value \(h, 1 \leq h \leq n \) and \(\varepsilon, 0 < \varepsilon < 1 \), and assuming that minimal spanning tree of the set of nodes has diameter \(O(h^2) \), we can find a data collection tree \(T_S \) such that the total energy consumption \(E(T_S) = O(n^{2-2\varepsilon} \cdot h \cdot OPT_c) \), \(D(T_S) = O(n^{2-2\varepsilon} \cdot h \cdot OPT_c) \), \(h(T_S) = h \) and \(\delta(T_S) = \alpha n^2 \cdot h^2 \).

We also may use the LAST construction described in previous section in order to obtain different tradeoff approximation for our criteria. In particular, applying Khuller et al. [32] produces the following results.

Theorem 3.2: Given an integer value \(h, 1 \leq h \leq n \) and \(\varepsilon, 0 < \varepsilon < 1 \), and assuming that minimal spanning tree of the set of nodes has diameter \(O(h^2) \), we can find a data collection tree \(T_S \) such that the total energy consumption \(E(T_S) = O(n^{2-2\varepsilon} \cdot h \cdot \frac{\omega(T')}{\omega(T')} \cdot OPT_c) \), \(D(T_S) = O((1 + \frac{2}{\alpha}) \cdot \frac{n d(e(T'))}{d(T')}) \cdot OPT_c) \), \(h(T_S) = h \) and \(\delta(T_S) = \alpha \), for \(\alpha > 1 \).

IV. Distributed Implementation

The distributed implementation of our construction heavily depends on the construction on minimal spanning tree (with the consequent manipulations) which is quite straightforward once we established connectivity between the nodes and chose the leader (the root of the tree). For this we can follow two different approaches as described in [9]. The first, described in Dolev et al. [35] forms a temporary underlying topology in \(O(n) \) time using \(O(n^3) \) message. The second (better) approach is given by Halldorsson and Mitra [36] that shows how to do this in \(O(poly(\log \gamma, \log n)) \), where \(\gamma \) is the ratio between the longest and shortest distances among nodes. After the topology is established, we can use leader-election algorithm by Awerbuch [29] that shows how to find a leader and minimum spanning tree in a distributed fashion in a network with \(n \) nodes in \(O(n) \) time using \(O(n \log n) \) messages. In our former construction, the leader initiates the process of finding the balance nodes with following hierarchy construction and \((\alpha, \beta) \)-LAST computation in distributed fashion as described in [37]. In the latter design, the leader initiates the process of shortcutting edges with the consequent convergesac process towards the leader. Each node (in parallel), computes the edge required to be added to the data collection tree and chooses the largest outgoing edge. The total time and message complexities for each \(T_i \) calculation are dominated by the initial minimum spanning tree construction step.

V. Simulation Results

In this section we show some simulation results with respect to the construction in Section 3, where we mainly interested in comparison of total consumption energy criteria obtained by ours and Elkin et al. [10], which is considered to be the best algorithm in terms of energy consumption with predefined hop-diameter. As we show, the simulation results fully support our theoretical analysis. In our first experiment we have randomly and uniformly distributed \(n \) sensor nodes in a square of size \(10 \times 10 \), with the network size \(n \) ranging from 200 to 600 in steps of 20, see Fig. 2(a,b,c). We have computed the energy consumption (Fig. 2(a)), the ratio between the weight of the heaviest edge in minimum spanning tree and the weight of minimum spanning tree (Fig. 2(b)) and the number of nodes that located in different levels of minimum spanning tree (Fig. 2(c)). The result is an average of 10 tries for every network size \(n \), where the predefined value that has been taken for required hop-diameter \(h \) is the square root of the obtained minimum spanning tree diameter \(d \). This is since for larger values of \(h \) our algorithm performs even better as there is no need in doing shortcuts for many nodes. We can, in fact, observe from the Fig. 2(c) that the amount of nodes that need to be shortcut when the value of \(h \) close to the diameter of minimum spanning tree is small. As it can be concluded from Fig. 2(a), for the values of \(n \) started from 240 our solution always outperforms the one given in [10]. Moreover, Fig. 2(b) also confirms the fact that the ratio between the weight of the heaviest edge in minimum spanning tree and the weight of minimum spanning tree deteriorates as \(n \) grows up. As our algorithm depends linearly on such ratio, we deduce that it works really well for real, large-scale deployments.

Our second experiment modeled a wireless sensor network by 2D Poisson point process of normalized unit density.
in an 25×25 region for various values of n, see Fig. 3(a,b,c). This is a standard technique for modeling random wireless network with omni-directional transmission as in [38]. We evaluate the same criteria as in the first experiment. We observe the same tendency for all Fig. 3(a), Fig. 3(b) and Fig. 3(c) as for uniformly placed sensors although the rates are slightly different. We also learn that the ratio in Fig. 3(b) indeed decreases but more slowly than for random uniform network.

VI. CONCLUSIONS

In this paper we have presented two constructions for data collection tree with provable performance bounds on total energy consumption, total transport capacity, hop diameter and stretch of the obtained paths from the nodes towards the root of the tree. We have shown that for various sensor nodes deployments our solutions outperforms the previously known schemes. It would be interesting to investigate how well our structures perform in terms of average hop-diameter (i.e. hop-diameter taken over all paths connecting nodes to the root) which can serve as another potential criteria to optimize for scenarios where sensors send the information towards the root in different time frames and periods of time. It looks like our schemes can be extended to a more general, SINR model, where a transmission is successful if the signal is strong enough compared to the interference (as a result of simultaneous transmissions). This is because we can adopt some of the known techniques for dividing the nodes into interference/transmission regions based on the transmit powers [39].

In order to adjust the solutions to mobile settings we can follow the approach in [35]: as nodes are allowed to change their positions according to their mobility plans, the topology will change with respect to the node movement. It makes sense then to indicate the time interval $[t_s, t_f]$, for which the induced topology, where t_s and t_f are the start and finish times. The two possible modes for topology construction can be considered: the static mode, preserves all the relevant communication links (those that are used for inducing the required topology) for the whole time interval $[t_s, t_f]$. Note that some other links might appear and disappear during the time interval, however the important links, which define the required topology remain unchanged. In other words, the communication graph, which is variant in time, always includes a subgraph which is unchanged for the whole time interval. The dynamic mode is different in that there is no constant subgraph which holds the topology property. However, as communication links are added and removed, depending on the movement of the nodes, the topology property requirement (e.g. connected dominating set) is satisfied during the entire period $[t_s, t_f]$. It can be shown that if we define a weight function w' which reflects amount of energy for any pair of nodes, i.e. $w' = \max_{t \in [t_s, t_f]} |d_{u,v}(t)|^2$, it satisfies a weak triangle inequality and therefore we can use algorithms minimizing energy consumptions for static environments to solve the static mode mobile scenarios. Also, it can be shown that if the distance function $d_{u,v}(t)$ is monotone non-increasing in
\([t_s, t']\) and monotone non-decreasing in \([t', t_f]\). Following this we can conclude that there is a finite set of critical time points for verifying structure properties, and then based on these verifications we can find it for the whole time interval \([t_s, t_f]\) in dynamic mode mobile setting.

Acknowledgement. The authors thank to Engineering and Physical Sciences Research Council (EPSRC), United Kingdom for providing support to the work on this paper.

REFERENCES

