On Multihop Communications For In-Vehicle Internet Access Based On a TDMA MAC Protocol

Hassan Aboubakr Omar*, Weihua Zhuang*, and Li Li†
*Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
†Communications Research Centre, Ottawa, Ontario, Canada, K2H 8S2

Abstract—A vehicular ad hoc network (VANET) is an emerging technology which has a great potential in realizing a variety of new applications. This paper presents a new packet routing scheme which allows a vehicle to discover the existence of a gateway to the Internet and to send/receive packets to/from the gateway via multihop communications. The proposed routing scheme is based on a multichannel medium access control protocol, known as VeMAC [1], [2], using time division multiple access. The performance of this cross-layer design is evaluated for a multichannel VANET in terms of the end-to-end packet delay and the percentage of occupied time slots per frame in a highway scenario. Both packet queueing and service delays are considered in the end-to-end delay calculation by modeling each relay vehicle as a queueing system, in which the packets are served in batches of no more than a specified maximum batch-size.

I. INTRODUCTION

A vehicular ad hoc network (VANET) consists of a set of vehicles and a set of stationary units along the road, known as road-side units (RSUs), all equipped with wireless communication devices. By employing vehicle-to-vehicle and vehicle-to-RSU communications, VANETs can realize various new applications to optimize the vehicle traffic, provide infotainment options to passengers, enhance the public safety standards, and increase the safety level of drivers and pedestrians on the road. Most of the VANET high priority safety applications require that each vehicle broadcasts information related to its current speed, acceleration, heading, etc., to all the vehicles within its one-hop neighbourhood [3]. Hence, supporting a reliable one-hop broadcast service is a main requirement of a medium access control (MAC) protocol for VANETs. The VeMAC protocol is based on time division multiple access (TDMA) and is recently proposed to satisfy the quality-of-service (QoS) requirements of VANET safety applications [1], [2], [4]–[6]. The protocol is developed specifically to provide a reliable one-hop broadcast service in a VANET scenario, while supporting multichannel operation to comply with the seven dedicated short range communication (DSRC) channels allocated by the Federal Communication Commission (FCC) for vehicular communications. By using computer simulations in a realistic city scenario [7], [8], the VeMAC protocol significantly outperforms the IEEE 802.11p standard [9] in terms of satisfying the QoS requirements of periodic and event-driven safety applications in VANETs [1].

Although the safety applications were the key motivation of VANETs, currently the applications targeting passenger infotainment are receiving a lot of interest [10]. This type of applications can make the driving easier, the trips more enjoyable, and may accelerate the deployment of VANETs due to a small market penetration requirement as compared to that needed for most of the safety applications [11]. The In-vehicle Internet access is a VANET application which aims at providing the passengers with a cheap access to the Internet via on-road gateways [10]. This paper presents a new packet routing scheme which allows a vehicle to discover the existence of a gateway to the Internet and to connect to the gateway via multihop communications. The proposed routing scheme is designed over the VeMAC protocol to exploit some useful VeMAC features, such as the knowledge of all the nodes (vehicles and gateways) which exist in a two-hop neighbourhood. This VANET architecture aims at achieving multihop In-vehicle Internet access by using the routing scheme, while satisfying the QoS requirements of the safety applications via the VeMAC protocol. The proposed cross-layer design between the MAC and network layers is evaluated in a highway scenario by studying the end-to-end delay required to deliver a packet from a vehicle to a gateway through multiple relay vehicles. The packet queueing and service delays at each relay vehicle are both considered in the end-to-end packet delay analysis. Another performance metric under consideration is the percentage of time slots per frame occupied by all the vehicles members of the same two-hop set (THS)¹ required to limit the average packet delay at each vehicle below a certain threshold. Numerical results are presented to study the effect of different parameters, including the vehicle density and the packet arrival rate, on the performance metrics.

II. SYSTEM MODEL AND VE MAC PROTOCOL

The VANET under consideration consists of a set of vehicles and a set of gateways placed along the road sides to provide Internet connectivity to the vehicles. The vehicles employ multihop communications to connect to the gateways, and a gateway, g, can communicate only with the vehicles located within a maximum number of hops, denoted by h₉, from the gateway. The location of each gateway g and the constant h₉ (which may vary from one gateway to another) should be determined to achieve a certain QoS based on the vehicle traffic in the region where the gateways are located. The VANET has one control channel (CCH) for transmission of

¹A THS is a set of nodes in which each node can reach any other node in two hops at most.
high priority safety messages and control information, and multiple service channels (SCHs) for transmission of safety and non-safety related application messages. The VeMAC protocol [1] is used by all nodes to access the communication channels, as briefly explained in the following. Each node has two transceivers: Transceiver1 is always tuned to the CCH, while Transceiver2 switches among the SCHs. On the CCH, two transceivers: Transceiver1 is always tuned to the CCH, and set of short VeMAC identifiers (IDs), where each VeMAC ID corresponds to a certain time slot that the node is accessing per frame on the CCH. Each VeMAC ID is chosen by a node at random, included in the header of each packet transmitted in the corresponding time slot, and changed if the node detects that its ID is already in use by another node. For a certain node, \(x \), set \(T_x \) denotes the set of time slots acquired by node \(x \) on the CCH, and set \(N_x \) is defined as the set of one-hop neighbours of node \(x \), from which node \(x \) has received packets on the CCH in the previous \(L \) slots. Each node must acquire at least one time slot per frame on the CCH to broadcast its safety messages, organize the communications with the one-hop neighbours over the SCHs, and announce the control information necessary to manage a distributed time slot assignment on the CCH. For the purpose of time slot assignment on the CCH, each node \(x \) should broadcast the VeMAC ID(s) and the corresponding time slot(s) of each node in set \(N_x \), once in each frame over one of its acquired time slot(s) in set \(T_x \). The short length of a VeMAC ID (9 bits [1]) serves to decrease the protocol overhead as compared to broadcasting the corresponding MAC address. Suppose node \(x \) is just powered on and needs to acquire a time slot. By listening to the CCH for \(L \) successive time slots, node \(x \) can determine set \(N_x \) and the time slot(s) used by each node in \(N_x \). Also, since each one-hop neighbour \(y \in N_x \), announcements the time slot(s) used by each node in \(N_y \), node \(x \) can determine all the time slots used by each of its two-hop neighbours, and consequently acquires one of the available time slots as described in [1]. Then, set \(N_x \) is updated by node \(x \) at the end of each time slot, always based on the packets received on the CCH in the previous \(L \) slots.

At each node, the packets which require transmission over the SCHs are queued and served on a first-come-first-served basis as follows. Suppose that node \(x \) needs to transmit a packet to its one-hop neighbour \(y \) on a SCH. At its first opportunity to access the CCH, node \(x \) uses the corresponding time slot in set \(T_x \) to announce for node \(y \) the index of the SCH over which the packet will be transmitted. Following this announcement, both of nodes \(x \) and \(y \) turn Transceiver2 to the correct SCH and exchange packets. In each time slot in \(T_x \), node \(x \) can announce on the CCH for a maximum of \(b \) packets to be transmitted on the same SCH (not necessarily to the same one-hop neighbour). At the start of a time slot in \(T_x \), if the number of queued packets is less than the constant \(b \), referred to as the bath-size, node \(x \) does NOT wait until the number of queued packets reaches \(b \), but announces on the CCH to transmit the existing packets on the chosen SCH. Only one SCH index can be announced by node \(x \) in a time slot on the CCH, and the batch-size \(b \) represents the maximum number of packets which can be transmitted by node \(x \) on the SCH after each announcement.

III. Routing Scheme

The proposed routing scheme consists of two main components: The gateway discovery, which determines how the vehicles discover the existence of a certain gateway and how they obtain the information necessary to connect to that gateway; and the packet forwarding, which defines how a packet is delivered via multihop communications from a vehicle to a gateway and vice versa.

A. Gateway Discovery

In order to announce for its service, each gateway should periodically broadcast a gateway discovery packet (GDP) containing the necessary information that a vehicle needs to access the gateway’s service, such as the network layer address of the gateway and the maximum number of hops that it can use to communicate with a certain vehicle. Before broadcasting a GDP, as mentioned in Section II, the transmitting gateway first announces on the CCH the index of the SCH over which the GDP will be broadcasted. Accordingly, each one-hop neighbour which receives the announcement turns its Transceiver2 to the correct SCH in order to receive the GDP. Among these one-hop neighbours, a subset is chosen to rebroadcast the GDP, and so on, until the GDP initiated by a gateway, \(g \), propagates \(h_g \) hops away from the gateway. The propagation of the GDP in the network is controlled via a time-to-live (TTL) field in the GDP header, which is originally set to \(h_g - 1 \) by gateway \(g \) and decremented by each vehicle which relays the GDP. Every GDP is identified by a broadcast ID, together with the network layer address of the gateway which initiated the GDP. These two fields are used by a vehicle to discard any duplicate of a previously received GDP. At each hop, the subset of the vehicles which relay the GDP is determined as follows. Suppose that a node, \(x \), announces for a GDP on one of its time slots, \(t_x \), on the CCH. For each node, \(y \), which receives the announcement, let \(D_y \) denote the set of one-hop neighbours of node \(y \) which did not receive the announcement for the GDP by node \(x \). Node \(y \) does NOT relay the GDP if any of the following conditions holds:

- \(\text{TTL} = 0 \);
- \(D_y = \emptyset \);
- \(\exists z \in N_y \setminus D_y \) such that \(D_y \subseteq N_z \) and \(|N_y| < |N_z| \), where \(| \cdot | \) denotes the cardinality of a set;
- \(\exists z \in N_y \setminus D_y \) such that \(D_y \subseteq N_z \), \(|N_y| = |N_z| \), and \(\min_{t_x \in T_x} t_z - t_x + L \times I_{(t_z < t_x)} < \min_{t_y \in T_y} t_y - t_x + L \times I_{(t_y < t_x)} \), where the notation \(I_{(a < b)} \) equals 1 if \(a < b \) and equals 0 otherwise.

When node \(y \) receives an announcement for the GDP by node \(x \) on time slot \(t_x \), it listens to the CCH for the \(L - 1 \) time slots following \(t_x \). At the end of this listening period, node \(y \) can determine sets \(T_z \) and \(N_z \) for each one-hop neighbour.
neighbour z (recall that, each one-hop neighbour z broadcasts the VeMAC IDs of the nodes in its N_z set at least once in each frame). Consequently, node y sets $D_y = \{ z \in N_y : \text{ID}_{h_y} \text{ is not broadcasted by node } z \}$, where ID$_{h_y}$ is the VeMAC ID of node x corresponding to time slot t_x. Hence, node y relays the GDP if none of the mentioned conditions is true. The last condition means that, node y does not relay the GDP if it has a one-hop neighbour z which satisfies that $D_y \subseteq N_z$ and $|N_y| = |N_z|$, and which can access the CCH before node y at the end of the listening period following time slot t_x. This condition allows for a faster propagation of the GDP in the network by choosing the relay which can announce for the GDP on the CCH first.

Fig. 1 explains how a GDP broadcasted by a gateway g is delivered to all the vehicles located within $h_g = 3$ hops from the gateway by using a few number of transmissions. In Fig. 1, a group of nodes is surrounded by an ellipse if each two nodes in the group can reach each other in one hop (the same applies to Fig. 2). That is, the set of one-hop neighbours of a node, x, consists of each node that is surrounded with node x by a certain ellipse. Fig. 1 also shows the time slot assignment on the CCH for all the nodes. Note that, different nodes may access the same time slot if they do not belong to the same THS, e.g., nodes x and w accessing time slot number 7. Each time slot that is highlighted in Fig. 1 is a time slot over which an announcement for the GDP is broadcasted. When gateway g announces for the GDP in the first frame, vehicles h, i, and j receive the announcement and listen to the CCH for a duration of 9 time slots ($L = 10$) in order to decide whether or not to relay the GDP. Vehicle h does not relay the GDP because $D_h = \emptyset$. Similarly, vehicle j does not relay the GDP since $D_j \subseteq \{ m, n, u, v \} \subseteq N_i$, $|N_j| = |N_i|$, and vehicle i can access the CCH before vehicle j at the end of the listening period. Consequently, vehicle i is the only vehicle which relays the GDP at the first hop. At the second hop, vehicles $u, v, m,$ and n receive the GDP relayed by vehicle i. Vehicle v relays the GDP since none of its one-hop neighbours, $u, m,$ and n (which received the GDP from vehicle i) can reach vehicles x and y in the third hop, i.e., $\exists z \in N_x \setminus D_v$ such that $D_v \subseteq N_z$. On the other hand, among the three vehicles $u, m,$ and n, only vehicle u relays the GDP, while vehicles m and n do not, for the same reason explained before for vehicle j. At this point, TTL = 0 as it has been decremented by the first and second hop relays. Hence, at the third hop, when vehicles, $x, y,$ and w receive the GDP, none of these vehicles will relay it further. Note that, when a certain relay broadcasts the GDP, every vehicle which has previously received the same GDP can discard the relayed copy by checking the broadcast ID and the address of the initiating gateway, e.g., nodes j and h discard the GDP relayed by node i.

B. Packet Forwarding

Each vehicle, v, stores a routing table which has an entry corresponding to each gateway g located within h_g hops from vehicle v. Each routing table entry at vehicle v consists of the network address of a certain gateway, the number of hops that the gateway can be reached in, and the MAC addresses of the one-hop neighbours of vehicle v which can relay a packet to the gateway. The routing table entry corresponding to a gateway g is created/updated during the propagation of each GDP broadcasted by gateway g, as explained in the following. Each vehicle, v, which relays a GDP initiated by a gateway, g, includes in the relayed GDP the VeMAC IDs of a subset of its one-hop neighbours as potential vehicles which can relay a packet to gateway g. This set of potential relays included by vehicle v is denoted by R_v, and the cardinality $|R_v|$ should be limited to a certain number, denoted by n_r. The set R_v consists of the one-hop neighbours of vehicle v which received the GDP and which can reach (in one hop) the highest number of one-hop neighbours of vehicle v which have not yet received the GDP, i.e., $R_v = \{ z \in N_v \setminus D_v : |R_v| \leq n_r, D_v \cap N_z \neq \emptyset, |D_v \cap N_z| \geq |D_v \cap N_z| \forall z \not\in R_v \}$. If vehicle v has more than one one-hop neighbour $z \in N_v \setminus D_v$ that have the same $|D_v \cap N_z| > 0$, vehicle v gives priority of inclusion in set R_v to the one-hop neighbours which are farther from the node from which vehicle v has received the GDP (each vehicle is aware of the positions of all its one-hop neighbours [2]). The reason is that, those one-hop neighbours are likely to be closer to the vehicles to which vehicle v is going to relay the GDP. When a vehicle, w, receives the GDP relayed by vehicle v, by calculating $R_v \cap N_{w},$ vehicle w determines the set of its one-hop neighbours which can relay a packet to gateway g. Also, by subtracting the TTL field from h_g, vehicle w determines the number of hops which currently separate it from gateway g. Consequently, vehicle w creates/updates the entry in its routing table corresponding to gateway g. If vehicle w does not receive a GDP from gateway g for a time duration larger than a specified threshold, the entry corresponding to gateway g is removed from the routing table. The GDPS should be broadcasted by each gateway at a broadcast rate which ensures that the routing table at each vehicle is always up-to-date based on the current network topology.

Fig. 2 explains how different vehicles update their routing table entries corresponding to a gateway g. When gateway g broadcasts a GDP, among all the vehicles which receive the GDP at the first hop (in the blue ellipse), only one vehicle will relay the GDP based on the relaying scheme described in Subsection III-A. If the time slot assignment on the CCH requires that vehicle e is the one to relay the GDP, and if we assume that $n_r = 4$, then vehicle e includes in the relayed GDP set $R_e = \{ e, d, c, b \}$. We have $R_v = \{ e, d, c, b \},$ because $D_e = \{ h, i, f \}, N_e \setminus D_e = \{ e, d, c, b, a \}$, and $D_e \cap N_a = \emptyset$. 1172
From a vehicle to a gateway are bidirectional. If gateway builds, ensures that all the links on a network path propagating back to the gateway.

Destination vehicle. The vehicle then replies by a route-reply propagates in the network as the GDP does, until it reaches the destination. This information about the whole network path to a certain destination can relay a packet to gateway by vehicle j to determine the set of possible relays to gateway g by calculating $\mathcal{R}_g \cap \mathcal{N}_j = \{i, h\}$.

To deliver a packet from a vehicle to a gateway, the vehicle forwards the packet to a randomly chosen relay among the ones listed in the routing table entry corresponding to the intended gateway. This process is repeated by each relay vehicle until the packet is finally delivered to the destination gateway.

Unlike the packet routing from a vehicle to a gateway, which is done on a proactive hop-by-hop basis, packets are routed from a gateway to a vehicle on a reactive source-routing basis. That is, a source gateway includes in the header of each transmitted packet the MAC address of each vehicle which should relay the packet until it reaches the destination vehicle. This information about the whole network path to a certain vehicle, v, is provided to a gateway, g, through the packets that it receives from vehicle v. That is, each relay which forwards a packet from vehicle v to gateway g includes its MAC address in the header of the relayed packet. In this way, gateway g can find a network path to vehicle v by reversing the order of the relays in the header of the most recent packet received from vehicle v. Note that, the way that the routing table at each vehicle is built, ensures that all the links on a network path from a vehicle to a gateway are bidirectional. If gateway g does not have information about the network path to a certain vehicle, the gateway broadcasts a route-request packet, which propagates in the network as the GDP does, until it reaches the destination vehicle. The vehicle then replies by a route-reply packet which accumulates a network path in its header while propagating back to the gateway.

IV. Performance Analysis

The total delay that a packet encounters at each vehicle consists of two main components: queueing delay and service delay. The queueing delay is the time duration from the instant that a packet arrives to the queue of a certain vehicle to the instant that the vehicle starts to announce for the transmission of the packet on the CCH. This delay includes the time duration that the packet spends in the queue until it becomes in the head-of-line (HOL) batch, i.e., among the first b packets, and the duration that the transmitting vehicle spends on waiting for one of its acquired time slots on the CCH (to announce the index of the SCH over which the HOL batch will be transmitted). On the other hand, the service delay of a tagged packet in the HOL batch consists of the duration of one time slot, which is used to transmit the announcement for the HOL batch on the CCH, and the time duration required to deliver the tagged packet in the HOL batch to its destination one-hop neighbour on the announced SCH. The analysis in this section neglects the second component of the packet service delay, which in general is relatively short compared to the packet queuing delay. When “delay” is mentioned solely, it refers to the total delay, which is the sum of the queuing delay and the duration of one time slot.

To simplify the delay analysis, we assume that each vehicle, x, releases its time slot(s) in set \mathcal{T}_x and acquires a new one(s) after each time it accesses the CCH. This assumption guarantees that, at each vehicle, the intervals of time between successive occasions of announcement for an HOL batch on the CCH are independent and identically distributed (i.i.d.) random variables. The assumption is appropriate in scenarios with high rates of transmission collisions, where the vehicles repeatedly release their time slots and acquire new ones. Consequently, each vehicle can be modeled as a queuing system with independent time intervals between successive occasions of service, where the packets are served in batches of a maximum batch-size b. In such a queuing system, when the packets arrive according to a Poisson process, we denote the system by $\text{M/G}^b(1)/1$. Hence, by considering only the arrival of packets generated at the application layer of a certain vehicle (assuming Poisson arrivals), the vehicle can be modeled as an $\text{M/G}^b(1)/1$ queuing system. However, each vehicle not only transmits the packets generated at its own application layer, but also relays the packets arriving from its one-hop neighbours.

Therefore, in order to analyze the end-to-end packet delay, a network of $\text{M/G}^b(1)/1$ queues should be considered. The exact analysis of such a network of queues is extremely difficult, even when $b = 1$ [12]. Hence, to make the analysis tractable, we approximate the arrival of packets which should be relayed by a vehicle as a single Poisson process with rate parameter equal to the sum of the packet arrival rates coming to the relay vehicle from all its one-hop neighbours. That is, the superposition of the departure processes of a number, N_{input}, of $\text{M/G}^b(1)/1$ queues (representing N_{input} one-hop neighbours of a relay vehicle) is approximated by a Poisson process with rate parameter $\sum_{j=1}^{N_{\text{input}}} \xi_j$, where ξ_j is the packet arrival rate coming from the $j^{th} \text{M/G}^b(1)/1$ queue to the relay vehicle.
To study the accuracy of this approximation, Fig. 3 compares the average packet delay at a relay vehicle when the packets arrive to the relay according to a Poisson process with rate parameter \(\xi \), as shown in Fig. 3b, with that in an actual case when the relay receives packets from the output of \(N_{\text{input}} \) \(M/G^{(b)}/1 \) queues, each with a packet arrival rate of \(\frac{\xi}{N_{\text{input}}} \), as shown in Fig. 3a. For the case in Fig. 3b, the average packet delay at the relay vehicle is calculated based on the analysis of the \(M/G^{(b)}/1 \) queuing system [14], while for that in Fig. 3a, the average delay is obtained by using MATLAB simulations, where the packets are served at the relay vehicle and at each of the \(N_{\text{input}} \) vehicles according to the VeMAC protocol. Fig. 3c shows the average packet delay at the relay vehicle versus a ratio, \(\varrho \), which denotes the average number of packet arrivals between two successive occasions of service divided by \(b \). As shown in Fig. 3c, for different \(\varrho \) values, the average packet delay of the \(M/G^{(b)}/1 \) queue represents a lower bound on the average delay when the packets arrive to the relay from \(N_{\text{input}} \) different vehicles. The lower bound becomes tighter for large \(N_{\text{input}} \), which indicates that the suggested Poisson process approximation is more accurate in a higher vehicle density scenario, when the packets arrive to a relay vehicle from a larger number of one-hop neighbours. Similar results are found for different values of the batch-size \(b \). Based on the Poisson process approximation, the average packet delay at each vehicle is found by using the analysis of the \(M/G^{(b)}/1 \) queuing system. However, the main challenge remains in the calculation of the total packet arrival rate at a relay vehicle based on the routing scheme in Section III, which depends mainly on the network topology. In the following, a highway model is first described, then the total packet arrival rate, end-to-end-packet delay, and percentage of occupied time slots per frame are evaluated. Due to space limitations, some details of the analysis are omitted and only described by words.

A. Highway Model

Consider a highway segment consisted of \(l \) lanes, where at any time instant the vehicles are distributed in each lane according to a Poisson process with rate parameter \(\eta_{\text{lane}} \) (vehicles/mile). By neglecting the width of the highway and the dimensions of a vehicle relative to the communication range, denoted by \(R \), the vehicles are distributed along the highway according to a single Poisson process with rate parameter \(\eta = l \eta_{\text{lane}} \), as shown in Fig. 4a (where the black dots represent vehicles). A gateway is placed at the right end of the highway segment and serves all the vehicles located within \(M \) hops of the gateway. We define \(M \) hop-regions, as shown in Fig. 4b, and it is assumed that at any time instant there is at least one vehicle in each hop-region, i.e., there exists a network path between the gateway and each vehicle located within \(M \) hops of the gateway. The network path from any vehicle to the gateway is always up-to-date, thanks to the periodically broadcasted GDPs (Section III-A). In each of the \(M \) hop-regions, the vehicles are indexed in an increasing order starting from the vehicle that is farthest from the gateway, as shown in Fig 4a. Based on the routing scheme in Section III, only the first \(n_r \) vehicles in each hop-region can relay packets to/from the gateway. As illustrated in Fig. 4b, at a certain time instant, \(N_m \) denotes the number of vehicles located in the \(m \)-th hop-region, \(G_m \) the gap between the first vehicle in the \(m \)-th hop-region and the farthest edge of the region with respect to the gateway, \(H_m \) the distance separating the first vehicle in the \(m \)-th hop-region and the \(i \)-th vehicle (if exists) in the same region, where all these random variables are defined for \(m = 1, \ldots, M \) and \(i = 1, \ldots, \infty \) (except \(H_1 \), which is not defined). The event that \(N_m \) takes a value \(n_m \) is denoted by \(\mathcal{N}_m \), and the same notation applies to all other random variables, i.e., \(G_m, H_m, \text{ and } W_i^m \). Conditional on the occurrence of an event \(\mathcal{E} \), the probability density function (PDF) of a continuous random variable \(X \) is denoted by \(f_{X|\mathcal{E}}(x) \), the probability mass function (PMF) of a discrete random variable \(Y \) is denoted by \(p(Y = y|\mathcal{E}) \),
and the probability of the occurrence of another event E' is denoted by $p(E'|E)$. The expected value of a random variable Z (discrete or continuous) is denoted by $E(Z)$. The set of events \mathcal{U}_i^m, $m = 2, \ldots, M$, $i = 1, \ldots, \infty$, and $r = 1, \ldots, \infty$, denotes that the rth vehicle in the mth hop-region exists and its communication range can reach the rth vehicle in the $(m-1)$th hop-region. Similarly, the set of events \mathcal{Q}_i^m denotes that the ith vehicle in the mth hop-region exists and uses the rth vehicle in the $(m-1)$th hop-region as a relay to the gateway. Packets are generated at the application layer of each vehicle according to a Poisson process with rate parameter λ. At the rth vehicle (if exists) in the mth hop-region, let λ_m, Q_m, and S_R^m, $m = 1, \ldots, M$ and $r = 1, \ldots, \infty$, respectively denote the total packet arrival rate, the packet queueing delay, and the time duration (in the unit of a slot time) between successive occasions of announcement for an HOL batch on the CCH.

B. Total Packet Arrival Rate

For a non-relay vehicle, the total packet arrival rate $\lambda_m^r = \lambda$ ($r > n_R$ or $m = M$), while for a relay vehicle we have

$$\lambda_m^r = \lambda + \sum_{i=1}^{\infty} \lambda_i^{m+1} p(Q_{i,r}^{m+1}), \quad 1 \leq r \leq n_R, 1 \leq m < M. \quad (1)$$

The probability $p(Q_{i,r}^{m+1})$ can be found by summing the probabilities of the intersection of the event $Q_{i,r}^{m+1}$ with the disjoint events $\mathcal{U}_{i,k}^m$, $k = r, \ldots, \infty$, i.e.,

$$p(Q_{i,r}^{m+1}) = \sum_{k=r}^{\infty} \frac{1}{\min(k, n_R)} p(U_{i,k}^m) \quad (2)$$

where $\min(k, n_R)$ denotes the minimum of k and n_R, and $\frac{1}{\min(k, n_R)}$ represents the probability $p(Q_{i,r}^{m+1}|Q_{i,k}^m)$ according to the routing scheme in Section III, since a vehicle in the $(m+1)$th hop region is aware of a maximum of n_R relay vehicles in the mth hop region and randomly chooses one among all the relay vehicles that it can reach. For given values of the random variables N_m, G_m, H_m, and W_i^m, the probabilities $p(U_{i,k}^m|G_m \cap S_R^m)$ and $p(U_{i,k}^m|H_m \cap G_m \cap S_R^m)$, $i > 1$, are the probabilities of having exactly $k-1$ vehicles in a distance $R-h_{m+1}$ and $R-h_{m+1}+W_i^m$ respectively. Hence, by using the law of total probability to find $p(Q_{i,k}^m)$, we have

$$p(U_{i,k}^m) = \int_0^{R} \int_0^{h_{m+1}} p(U_{i,k}^m|G_m \cap S_R^m) f_{G_m}(g_m) f_{h_{m+1}}(h_{m+1}, g_m) dg_m dh_{m+1} \quad (3a)$$

$$p(U_{i,k}^m) = \sum_{n_i=1}^{\infty} \int_0^{R} \int_0^{h_{m+1}-W_i^m} p(U_{i,k}^m|H_m \cap G_m \cap S_R^m) f_{G_m}(g_m) f_{h_{m+1}}(h_{m+1}, g_m) \quad (3b)$$

The unknown PDFs and PMFs in (3) can be found as follows. The PMF $p(N_m = n_m|G_m \cap H_m) n_m+1$ is the probability of having exactly n_m+1 vehicles in a distance $h_{m+1} - g_{m}$, the PDFs $f_{G_m}(g_m)$ and $f_{h_{m+1}}(h_{m+1}, g_m)$, $m = 1, \ldots, M-1$, can be found using [13], and finally, the PDF $f_{W_i^m}(w_i^m|g_m, h_{m+1}, n_m+1)$, $m = 1, \ldots, M-1$ and $i = 2, \ldots, \infty$, is the $(i-1)$th order statistic of the uniform distribution (conditional on the existence of n_m+1 vehicles in a distance interval $[0, h_{m+1} - g_{m}]$, the locations of these vehicles are i.i.d. uniformly distributed random variables). Hence, by evaluating the integrals in (3a) and (3b), and substituting into (2) and then (1), the total packet arrival rate at each vehicle can be calculated.

C. End-to-end Packet Delay

At the rth vehicle in the mth hop-region, by using λ_m^r from Subsection IV-B, the probability generating function (PGF) of the number of packet arrivals during the service duration of an HOL batch is denoted by $K(z)$ and given by

$$K(z) = \sum_{i=0}^{L} \left(\sum_{j=1}^{L} p(S_R^m = j) e^{\lambda_m^r j t} \right) \frac{1}{i!} z^i \quad (4)$$

where the PMF $p(S_R^m = j)$, $j = 1, \ldots, L$, can be found in terms of the number of time slots that the rth vehicle in the mth hop-region acquires per frame [1]. By using (4), and following a similar approach as in [14], the PGF of the number of packets in the queue just before the start of the service time of an HOL batch is obtained, and then the average packet queuing delay, $E(Q_m)$, is calculated $\forall r, m$. Then, given the average packet delay, $E(Q_m) + t$, and by calculating $p(N_m = r)$ using the same method used to find $p(Q_{i,k}^m)$ in (3), the expected value of the average packet delay at a randomly chosen vehicle/relay in each hop-region is obtained. Finally, the expected value of the average end-to-end packet delay from a randomly chosen vehicle in the mth hop-region ($1 < m \leq M$) to the gateway is calculated by summing the expected value of the average packet delay at a randomly chosen vehicle in the mth hop-region and that at a randomly chosen relay in each of hop-regions $1, \ldots, m-1$.

D. Percentage of Occupied Time Slots

Based on the batch-size b and λ_m^r at the rth vehicle in the mth hop-region, consider that the vehicle adjusts its number of time slots per frame, denoted by k_m^r, to guarantee that the average packet delay, $E(Q_m) + t$, is below a threshold, denoted by d_{max}. This subsection studies the number of time slots per frame required by all the vehicles members of the same THS in order to limit the average packet delay at each vehicle below d_{max}. This number should not exceed L to avoid any hidden terminal problem and allow each vehicle to acquire a time slot on the CCH. We define $M = 1$ two hop (TH) regions. The first TH region contains all the vehicles in the first and second hop-regions, while the mth TH region, $m = 2, \ldots, M-1$, contains all the vehicles in the mth and $(m+1)$st hop-regions, plus all the vehicles in the $(m-1)$st hop-region which can reach at least one vehicle in the mth hop-region. Based on this definition, the
We have used MAPLE 17 to calculate the PDFs f_r that, when the index m increases when the vehicle index r, the number of vehicles in each of the TH regions 2 to $M-1$ can be larger than the number of vehicles which actually exist in one THS. The reason is that, a vehicle in the $(m-1)^{th}$ hop-region which can reach some of the vehicles in the m^{th} hop-region is not necessarily a two-hop neighbour of all the vehicles in the $(m+1)^{th}$ hop-region. Let $N_m, m = 1, ..., M-1$, denote the total number of vehicles in the m^{th} hop-region which can reach at least one vehicle in the $(m+1)^{th}$ hop-region. Therefore
\[
p(N_m = i) = \sum_{j=1}^{\infty} p(N_{m+1} = j)p(q_{j,i}^{m+1})
\]
\[1 \leq m \leq M-1, 1 \leq i < \infty.\]

By using (5), together with k_r^m and $p(N_m = r) \forall r, m$, the average number of the time slots occupied by all the vehicles in each TH region is calculated.

V. NUMERICAL RESULTS

This section presents numerical results for a 4-lane highway segment consisted of 5 hop-regions based on a communication range $R = 150$ m. The average vehicle density per lane, η_{lane}, varies from 12 to 67 vehicles/mile, a range which corresponds to traffic flow conditions varying from a free-flow scenario to a near-capacity one [15]. For the VeMAC protocol, the number of time slots per frame $L = 275$ slots and the slot duration $t = 0.35$ ms resulting in a frame duration of 96.25 ms [1]. We have used MAPLE 17 to calculate the PDFs $f_{\lambda_{r,m}}(g_m)$, $m = 1, ..., 4$, and MATLAB R2012b for all other calculations including the numerical evaluation of the integrals in (3).

Fig. 5a shows $\lambda_{r,m}^m$, for $r = 1, ..., 10$, $m = 1, ..., 5$, and different λ values. In Fig. 5a, the value of $n_R = 10$, and hence the vehicles under consideration in hop-regions 1 to 4 represent all the potential relay vehicles located in these hop-regions. As shown in Fig. 5a, in the 5^{th} hop-region, $\lambda_{r,m}^5 = \lambda \forall r$, since the vehicles in this hop-region do not relay any packet. On the other hand, in the m^{th} hop region, $m = 1, ..., 4$, $\lambda_{r,m}^m$ increases when the vehicle index r decreases. The reason is that, when the index r is small, a relay vehicle in the m^{th} hop region is more likely to be reached by a higher number of vehicles in the $(m+1)^{th}$ hop region. Similarly, for a given vehicle index r, $\lambda_{r,m}^m$ increases when the hop-region index m is small, i.e., when the r^{th} relay vehicle is in a hop-region closer to the gateway. The reason is that, the relay vehicles located at the m^{th} hop region ($m < 5$) will eventually relay all the packets arriving from all the farther hop-regions (indexed $m+1, ..., 5$) while being forwarded to the gateway. The increase in the λ value eventually increases $\lambda_{r,m}^m \forall r, m$, as shown in Fig. 5a. Similarly, if λ remains constant and η_{lane} increases, $\lambda_{r,m}^m$ increases for all the relay vehicles (results are omitted).

The number n_R of relays included in the GDP defines the number of potential relay vehicles in each hop-region. Consequently, the value of n_R affects $\lambda_{r,m}^m$ for some m and r, as shown in Fig. 5b. When $n_R = 5$, only the first 5 vehicles in each hop-region can relay packets, and hence $\forall m$, the value of $\lambda_{r,m}^m$ increases for $r = 1, ..., 5$ and decreases for $r = 6, ..., 15$ as compared to the $n_R = 10$ and $n_R = 15$ cases. On the other hand, no significant difference in $\lambda_{r,m}^m \forall r, m$ is observed when n_R is changed from 10 to 15. The reason is that, even if there are 15 potential relays included in the GDP broadcasted by a vehicle in the m^{th} hop region, not all the 15 relays can
be reached by the vehicles in the \((m + 1)\)th hop region, and consequently not all of them will actually relay packets.

The effect of \(d_{\text{max}}\) on \(k_r^m\) is illustrated in Fig. 6 for the first five vehicles in each hop-region. When \(d_{\text{max}} = 25\) ms, while the \(r\)th vehicle in the 5th hop-region (does not relay packets) has \(k_r^5 = 2\) slots\(\forall r\), some relay vehicles in the other hop-regions need to acquire a higher number of time slots per frame in order to satisfy this delay requirement, e.g., \(k_r^1 = 7\) slots. When \(d_{\text{max}}\) is increased to 100 ms, only one time slot per frame is acquired by each vehicle, except the relay vehicles with high packet arrival rates at the hop-regions close to the gateway. If the batch-size \(b\) increases, the number of time slots acquired by a relay vehicle can be significantly reduced, since the vehicle is able to announce for a larger number of packets in each time slot. For instance, as shown in Fig. 6, while a batch-size \(b = 4\) requires that \(k_r^1 = 6\) slots and \(k_r^2 = 4\) slots for \(d_{\text{max}} = 50\) ms, we found that both values are halved when \(b = 8\), and are reduced to only 1 slot when \(b = 16\).

Fig. 7a shows the effect of \(d_{\text{max}}\) on the average percentage of time slots per frame occupied by all the vehicles in each TH region. Based on the TH region definition in Subsection IV-D, and given the number of time slots acquired by individual vehicles in Fig. 6, the second TH region is the most loaded (in terms of time slot occupancy). Since it includes all the vehicles in the second and third hop-regions, as well as all the relay vehicles in the first hop-region. As shown in Fig. 7a, the second TH region has an average time slot occupancy less than 75\%, even for \(d_{\text{max}} = 25\) ms and \(\eta_{\text{max}} = 67\) vehicles/mile. In Fig. 7a, when \(d_{\text{max}} = 25\) ms, each non-relay vehicle needs to acquire three time slots per frame, which results in a significant increase in the average slot occupancy in all TH regions, as compared to the \(d_{\text{max}} = 50\) ms and \(d_{\text{max}} = 100\) ms cases, in which a non-relay vehicle needs to acquire only two time slots per frame to satisfy the delay threshold. When \(d_{\text{max}}\) decreases from 100 ms to 50 ms, the slight increase in the average slot occupancy shown in Fig. 7a is due to the extra time slots acquired by some relay vehicles. Fig. 7b shows the average percentage slot occupancy for each TH region versus \(\lambda\). When \(\lambda = 31\) packets/s (3 packets/frame), almost 100\% average slot occupancy is achieved at the second TH region. Hence, for the highest average vehicle density, \(\eta_{\text{max}} = 67\) vehicles/mile, smallest delay threshold, \(d_{\text{max}} = 25\) ms, and smallest batch-size, \(b = 4\), under consideration, a frame length of 275 time slots can accommodate all the vehicles in each TH region for a packet arrival rate \(\lambda\) up to 31 packets/s. If \(d_{\text{max}}\) is increased to 50 ms, as shown in Fig. 7c, then for the same \(\eta_{\text{max}}\) and \(b\)
values as in Fig. 7b, the average percentage of occupied time slots remains below 85% for all TH regions, even for λ as high as 42 packets/sec (4 packets/frame). On the other hand, if \(d_{\text{max}} = 25 \) ms and \(b \) is increased from 4 to 8, the average slot occupation is reduced by approximately 35% for each TH region, as shown in Fig. 7d.

Fig. 8a shows the average end-to-end packet delay for each hop-region for different values of \(d_{\text{max}} \). A packet sent from a vehicle in the 5th hop-region can be delivered to the gateway with an average end-to-end delay of 110 ms (178 ms) when \(d_{\text{max}} = 25 \) ms \((d_{\text{max}} = 50 \) ms). Note that, the value of \(d_{\text{max}} \) represents the delay threshold below which each vehicle limits its average packet delay by acquiring a suitable number of time slots per frame. How much the actual value of the average packet delay at a certain vehicle is below \(d_{\text{max}} \) depends mainly on the total packet arrival rate at the vehicle. Fig. 8b shows the effect of \(\lambda \) on the average end-to-end packet delay for each hop-region. As shown in Fig. 8b, the increase in the average end-to-end packet delay with \(\lambda \) is higher when a hop-region is farther from the gateway. However, the effect of \(\lambda \) on the average end-to-end packet delay is not significant, especially for the first two hop-regions, since when \(\lambda \) increases, each vehicle can access more time slots per frame in order to keep its average packet delay below \(d_{\text{max}} \).

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel packet routing scheme, developed based on the VeMAC protocol, to allow a vehicle to connect to an Internet gateway via multihop communications in a multichannel vehicular ad hoc network. How each vehicle discovers the existence of a gateway has been defined and how the packets are delivered between a vehicle and a gateway through multiple relay vehicles has been described. Numerical results show that, due to a high total packet arrival rate, a relay vehicle may need to acquire more time slots per frame in order to limit its average packet delay below a certain threshold, especially when the relay vehicle is located close to a gateway. By properly adjusting the number of time slots that each vehicle acquires per frame, increasing the packet arrival rate at each vehicle affects more the percentage of occupied time slots per frame rather than the end-to-end packet delay. In the future, we plan to evaluate the proposed cross-layer design in highway and city scenarios, by using realistic mobility traces of vehicles, in comparison with a benchmark routing protocol, such as the Greedy Perimeter Stateless Routing (GPSR), over the IEEE 802.11p standard. We also plan to develop a gateway placement strategy in a city scenario, together with gateway selection and handover schemes.

REFERENCES

Fig. 8: Average end-to-end packet delay for each hop-region for \(n_{\text{R}} = 10 \) and \(n_{\text{max}} = 30 \) vehicles/mile.